Developments in high-density Cobra fiber positioners for the Subaru Telescope's Prime Focus Spectrometer

Charlie Fisher

Jet Propulsion Laboratory, California Institute of Technology

Co-Authors: David Braun (JPL), Joel Kaluzny (JPL), Michael Seiffert (JPL), Richard Dekany (Cal Tech), Richard Ellis (Cal Tech) and Roger Smith (Cal Tech)

Outline

- Description of the Prime Focus Spectrometer (PFS)
 - Focal Plane layout
- Cobra positioner design overview
 - Key Requirements
- Recent design changes
 - Hard Stops
 - Manufacturing/Assembly
- Latest performance testing
 - Test set up
 - Performance comparison (2012 vs. 2009)
- Path forward

Prime Focus Spectrometer

- PFS is a multi-object fiber-fed spectrometer that will conduct targeted surveys for the study of dark energy, galaxy evolution and galactic archaeology
 - Evolved from Wide-Field Multi Object Spectrometer (WFMOS)
- Consists of 2394 fibers (-f/2.4) arranged in a 1.38 degree field at the prime focus of the Subaru Telescope
- The light from each cosmological target is fed through ~50m of fiber to a spectrograph located off of the telescope
- Key to the instrument is the Cobra fiber positioner that can rapidly position an individual fiber to within 5µm of the intended target in 1 minute

Cobra Positioners

Focal Plane Configuration

- Within 1.38° FOV
 - 2394 Cobra positioners
 - 6 acquisition & guide cameras
 - 85 fiducial fibers
- Cobra positioners are hex packed with 8mm center-to-center spacing
- Assembled into 42 modules that contain 57 Cobra positioners each
 - 1 row of 28, 1 row of 29
 - Each module contains the drive electronics necessary to run the 114 motors.
- They are arrayed to create 3 parallelograms with spaces between allowing for the placement of 43 fiducial fibers in the array and 42 fiducial fibers around the perimeter of the array.

Cobra Design Overview

- Cobra is a θ, φ configured mechanism that contains 2 piezo rotary motors offset from each other by ¼ of the desired patrol diameter.
 - Theta-stage is 4.4mm wide motor
 - Phi-stage is 2.4mm wide motor
- Patrol diameter is sized so that there is overlap with all adjacent positioners to provide full coverage of the focal plane.
- Fiber is routed from the arm on the phi-stage through the center of the Cobra
 - Stages utilize floating hard stops to allow for full range of motion, yet prevent over twisting of the optic fiber
 - Protects fiber during handling and operation
- Piezo motors use phase shifted signals to excite the motor body at the first bending resonant frequency
 - Stick-slip conditions between the motor stator and end caps on the output shaft creates rotary motion.

Courtesy NST

Design Changes

Hard Stops

- The floating hard stops were identified as a contributor to positioning errors and erratic behavior based on testing the original prototype in 2009
 - Phi-stage hard stop had propensity to fall out or dislodged during basic handling
 - Both hard stops would occasionally get cocked and slow the motors down
- Phi-stage hard stop was switched to a static hard stop limiting travel from -20° to +200°
- Theta-stage hard stop was kept as floating, but the aspect ratio was increased to help reduce the likelihood of rotating and jamming
- Design for Manufacturability and Assembly
 - Reduce the number of bonding operations required for assembly
 - Replace with set screws/clamps
 - Eliminates waiting for cure times
 - Use flex print cables for both motors
 - Easier routing of cables from the motors down the outside of the Cobra housing
 - Low profile to allow for dense packing
 - Cable loop built into the base of the phi-stage
 - Change in ceramic end cap vendor
 - Tighter control of surface finishes and run out
 - Reduced scrap rate and need for hand polishing parts
 - Unit cost reduction was not realized when producing just 5 Cobra positioners
 - Based upon vendor quotes cost savings will be realized on large quantity builds

2009 phi-stage floating hard stop

Performance Testing – Set Up

- New Scale Technologies delivered 5 new prototype Cobra positioners in the spring 2012
- Intent was to evaluate performance of "upgrades" to the design against the original test results from 2009
- Requirement: converge on a 90% of all targets to within 5µm in 10 move iterations or less

Mimic how PFS will function

- 1. Back-light fibers image using metrology camera
- 2. Centroided fiber images determine current location in pixel space
- 3. Calculate motor angles using inverse kinematics
- 4. Predict number of motor steps needed to move desired angles
- 5. Command Cobra to move
- 6. Back-light fibers image using metrology camera
- 7. Etc.
- 8. Etc.

Test Set-Up

- Metrology Camera: QSI 540i CCD
 - 2048 x 2048 pixels, 7.4μm pixels
 - TEC-55 lens with 55mm extension tube
- Use translation stages to determine pixel scale (apparent motion vs. actual motion)
 - Near 1:1 (i.e. 4mm move on translation stage \approx 4mm move on CCD
- Fiber image approximately 18 pixels across (133µm)
 - Sub-micron centroiding accuracy achievable
- Characterize the motor performance by moving a set number of steps and measuring the angle moved
 - Breaks the full range of motion into "regions"
 - Calculate the average step size in each region
 - Update average step size during testing
 - Average the average step size from the last move made with the existing average step size in that region
- Targets were randomly chosen over the full patrol area
 - 50 targets per Cobra

Performance Testing Results

- Design improvements resulted in a more uniform average step size for the motors
 - Allowed for less iterations to move fiber to target

- 90% of all targets took 6 move iterations or less to get within 5μm
 - 95% took 7 move iterations or less
 - No correlation between move iterations needed and the distance the motors need to travel

Path Forward

- More developments planned to validate performance of the Cobra fiber positioner
 - Collision avoidance
 - Since patrol areas overlap care needs to be taken so that two adjacent positioners do not collide
 - Use 1-2 additional move iterations to move fiber to a staging area where final motion to target will be mostly radial
 - Running multiple Cobra's simultaneously
 - Software upgrades
 - Electronics
 - Initially use multiple MC-1000 boards from New Scale Technologies to run additional motors simultaneously
 - Test custom breadboard electronics that can run multiple motors from the same board

Summary

- The Cobra fiber positioner was re-designed based on lessons learned from the original development in 2009
 - Improved precision of ceramic motor parts
 - Eliminated the phi-stage floating hard stop
 - Elongated the theta-stage floating hard stop
- Performance improvements were realized
 - 1 less move iteration is needed to get 90% of targets to within 5mm compared to 2009 version
- The Cobra fiber positioner will enable PFS to make unprecedented red shift surveys of the universe.